On h-purifiable submodule of QTAG-module

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Decomposition Theorems on QTAG-module

It has been observed by different authors that QTAG-modules behave very much like torsion abelian groups. In this paper, in section 3, we characterize quasi-essential submodules (Theorem 3.9) and further find a characterization for an h-pure submodule to be a direct summand (Theorem 3.11). In section 4, we obtained a necessary and sufficient condition for a submodule to be contained in a minima...

متن کامل

On the Square Submodule of a Mixed Module

The notion of the square submodule of a module M over an arbitrary commutative ring R, which is denoted by RM, was introduced by Aghdam and Najafizadeh in [3]. In fact, RM is the R−submodule of M generated by the images of all bilinear maps on M. Furthermore, given a submodule N of an R−module M, we say that M is nil modulo N if μ(M×M) ≤ N for all bilinear maps μ on M. The main question about t...

متن کامل

ON QUASI h-PURE SUBMODULES OF QTAG-MODULES

Different concepts and decomposition theorems have been done for QTAGmodules by number of authors. We introduce quasi h-pure submodules for QTAG-modules andwe obtain several characterizations for quasih-pure submodules and as a consequence we deduce a result done by Fuchs 1973.

متن کامل

H$^*$-condition on the set of submodules of a module

In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.

متن کامل

On Some QTAG-Modules

In this paper we study totally projective QTAG-modules and the extensions of bounded QTAG-modules. In the first section we study totally projective modules M/N and M ′/N ′ where N , N ′ are isomorphic nice submodules of M and M ′ respectively. In fact the height preserving isomorphism between nice submodules is extented to the isomorphism from M onto M ′ with the help of Ulm-Kaplansky invariant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2014

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.45.2014.945